Achieving faster execution with shorter compilation time can foster further diversity and innovation in neural networks. However, the current paradigm of executing neural networks either relies on hand-optimized libraries, traditional compilation heuristics, or very recently genetic algorithms and other stochastic methods. These methods suffer from frequent costly hardware measurements rendering them not only too time consuming but also suboptimal. As such, we devise a solution that can learn to quickly adapt to a previously unseen design space for code optimization, both accelerating the search and improving the output performance. This solution dubbed Chameleon leverages reinforcement learning whose solution takes fewer steps to converge, and develops an adaptive sampling algorithm that not only focuses on the costly samples (real hardware measurements) on representative points but also uses a domain-knowledge inspired logic to improve the samples itself. Experimentation with real hardware shows that Chameleon provides 4.45x speed up in optimization time over AutoTVM, while also improving inference time of the modern deep networks by 5.6%.


翻译:然而,目前实施神经网络的模式要么依赖于手动优化的图书馆、传统的编译超自然学,要么依靠最近的遗传算算法和其他随机方法。这些方法经常受到费用高昂的硬件测量的影响,不仅耗时太长,而且不够理想。因此,我们设计了一种解决方案,可以学习如何迅速适应先前看不见的设计空间,以优化代码,既加快搜索,又改进产出性能。这个解决方案被称为Cameleon, 利用强化学习,而其解决方案需要的整合步骤较少,开发适应性抽样算法,不仅侧重于代表性点的昂贵样本(实际硬件测量),而且还使用一种受域知识启发的逻辑来改进样本本身。 使用实际硬件的实验显示,Chameleon在AutTVM的优化时间里提供了4.45x的加速速度,同时将现代深层网络的推导时间提高5.6%。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年9月25日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员