In this paper, we focus on computing the kernel of a map of polynomial rings $\varphi$. This core problem in symbolic computation is known as implicitization. While there are extremely effective Gr\"obner basis methods used to solve this problem, these methods can become infeasible as the number of variables increases. In the case when the map $\varphi$ is multigraded, we consider an alternative approach. We demonstrate how to quickly compute a matrix of maximal rank for which $\varphi$ has a positive multigrading. Then in each graded component we compute the minimal generators of the kernel in that multidegree with linear algebra. We have implemented our techniques in Macaulay2 and show that our implementation can compute many generators of low degree in examples where Gr\"obner techniques have failed. This includes several examples coming from phylogenetics where even a complete list of quadrics and cubics were unknown. When the multigrading refines total degree, our algorithm is \emph{embarassingly parallel} and a fully parallelized version of our algorithm will be forthcoming in OSCAR.
翻译:暂无翻译