Text embeddings from large language models (LLMs) have achieved excellent results in tasks such as information retrieval, semantic textual similarity, etc. In this work, we show an interesting finding: when feeding a text into the embedding LLMs, the obtained text embedding will be able to be aligned with the key tokens in the input text. We first fully analyze this phenomenon on eight embedding LLMs and show that this phenomenon is universal and is not affected by model architecture, training strategy, and embedding method. With a deeper analysis, we then find that the main change in embedding space between the embedding LLMs and their original generative LLMs is in the first principal component. By adjusting the first principal component, we can align text embedding with the key tokens. Finally, we give several examples to demonstrate the vast application potential of this finding: (1) we propose a simple and practical sparse retrieval method based on the aligned tokens, which can achieve 80\% of the dense retrieval effect of the same model while reducing the computation significantly; (2) we show that our findings provide a fresh perspective to help understand fuzzy concepts (e.g., semantic relatedness vs. semantic similarity) and emerging technologies (e.g., instruction-following embedding) in this field.
翻译:暂无翻译