The availability of large spatial data geocoded at accurate locations has fueled a growing interest in spatial modeling and analysis of point processes. The proposed research is motivated by the intensity estimation problem for large spatial point patterns on complex domains in $\mathbb{R}^2$ (e.g., domains with irregular boundaries, sharp concavities, and/or interior holes due to geographic constraints) and linear networks, where many existing spatial point process models suffer from the problems of "leakage" and computation. We propose an efficient intensity estimation algorithm to estimate the spatially varying intensity function and to study the varying relationship between intensity and explanatory variables on complex domains. The method is built upon a graph regularization technique and hence can be flexibly applied to point patterns on complex domains such as regions with irregular boundaries and holes, or linear networks. An efficient proximal gradient optimization algorithm is proposed to handle large spatial point patterns. We also derive the asymptotic error bound for the proposed estimator. Numerical studies are conducted to illustrate the performance of the method. Finally, we apply the method to study and visualize the intensity patterns of the accidents on the Western Australia road network, and the spatial variations in the effects of income, lights condition, and population density on the Toronto homicides occurrences.


翻译:在准确地点,大量空间数据地理编码的可用性促使人们对空间建模和分析点进程的兴趣日益浓厚。拟议研究的动机是,复杂域的大型空间点模式的强度估计问题($\mathbb{R ⁇ 2$)(例如,有非正常边界、尖锐混凝土和(或)因地理限制而导致的内部孔)和线性网络,许多现有空间点进程模型都存在“渗漏”和计算问题。我们提出一个高效的强度估计算法,以估计空间上差异的强度函数,并研究复杂域的强度和解释变量之间的不同关系。这种方法建立在图表正规化技术上,因此可以灵活地用于指点复杂域的模式,如有不固定边界和孔的区域,或线性网络。建议一种高效的准加速度优化算法,以处理大空间点模式。我们还从中得出了与拟议估计仪和计算有关的非典型错误。我们进行了数值研究,以说明该方法的性能。最后,我们运用了方法研究和直视事故在西澳大利亚人口密度网络、人口密度变化以及空间条件变化中对西澳洲地区谋杀率率率、人口密度网络和空间变化的影响。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员