This paper discusses the problem of estimating treatment allocation rules under network interference. I propose a method with several attractive features for applications: (i) it does not rely on the correct specification of a particular structural model; (ii) it exploits heterogeneity in treatment effects for targeting individuals; (iii) it accommodates arbitrary constraints on the policy function; (iv) it does not necessitate network information of the target units. I introduce estimation procedures that leverage experimental or observational data and derive strong guarantees on the utilitarian regret. I provide a mixed-integer linear program formulation, which can be solved using off-the-shelf algorithms. I illustrate the advantages of the method for targeting information on social networks.
翻译:本文件讨论了在网络干扰下估计治疗分配规则的问题。我提议一种方法,其中有若干有吸引力的应用特征:(一) 它不依赖对特定结构模型的正确说明;(二) 它利用针对个人的治疗效果的异质;(三) 它考虑到政策功能的任意限制;(四) 它不需要目标单位的网络信息。我介绍一种估计程序,利用实验或观察数据,并对功利主义的遗憾提供有力的保障。我提供了一种混合整数线性程序配方,可通过现成算法加以解决。我说明了将社会网络信息作为目标的方法的优点。