Driven by the critical needs of biomanufacturing 4.0, we introduce a probabilistic knowledge graph hybrid model characterizing the risk- and science-based understanding of bioprocess mechanisms. It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and nonstationary dynamics. Given very limited real process observations, we derive a posterior distribution quantifying model estimation uncertainty. To avoid the evaluation of intractable likelihoods, Approximate Bayesian Computation sampling with Sequential Monte Carlo (ABC-SMC) is utilized to approximate the posterior distribution. Under high stochastic and model uncertainties, it is computationally expensive to match output trajectories. Therefore, we create a linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary likelihood-based ABC-SMC approach. Through matching the summary statistics driven through LG-DBN likelihood that can capture critical interactions and variations, the proposed algorithm can accelerate hybrid model inference, support process monitoring, and facilitate mechanism learning and robust control.
翻译:在生物制造4.0的关键需求驱动下,我们引入了一种概率知识图形混合模型,以说明对生物处理机制的风险和科学理解;它可以忠实地捕捉重要特性,包括非线性反应、部分观测状态和非静止动态;考虑到有限的实际过程观测,我们得出了一种事后分布,以量化模型估计不确定性;为了避免对难测可能性的评估,将近似于贝塞西亚计算与序列蒙特卡洛(ABC-SMC)的抽样用于近似后方分布;在高度随机性和模型不确定性下,它计算成本昂贵,以匹配输出轨迹。因此,我们建立了一个直线高斯动态海湾动态网络(LG-DBN),辅助基于概率的ABC-SMC方法。通过匹配LG-DBN可能性驱动的汇总统计数据,以捕捉到关键互动和变化,拟议的算法可以加速混合模型的推断,支持过程监测,并促进机制学习和稳健控制。