Few-shot learning (FSL) is an important and topical problem in computer vision that has motivated extensive research into numerous methods spanning from sophisticated meta-learning methods to simple transfer learning baselines. We seek to push the limits of a simple-but-effective pipeline for more realistic and practical settings of few-shot image classification. To this end, we explore few-shot learning from the perspective of neural network architecture, as well as a three stage pipeline of network updates under different data supplies, where unsupervised external data is considered for pre-training, base categories are used to simulate few-shot tasks for meta-training, and the scarcely labelled data of an novel task is taken for fine-tuning. We investigate questions such as: (1) How pre-training on external data benefits FSL? (2) How state-of-the-art transformer architectures can be exploited? and (3) How fine-tuning mitigates domain shift? Ultimately, we show that a simple transformer-based pipeline yields surprisingly good performance on standard benchmarks such as Mini-ImageNet, CIFAR-FS, CDFSL and Meta-Dataset. Our code and demo are available at https://hushell.github.io/pmf.
翻译:少见的学习(FSL)是计算机愿景中一个重要和热门的问题,它促使人们广泛研究从先进的元学习方法到简单的转移学习基线等多种方法。我们力求将简单但有效的管道的极限推向更现实和实用的少见图像分类环境。为此目的,我们从神经网络结构的角度探索少见的学习,以及不同数据供应中网络更新的三阶段管道。 不同的数据供应考虑的是未经监督的外部数据。 基础类别被用来模拟元培训的少见任务,而新任务中贴上很少标签的数据用于微调。我们调查的问题有:(1) 外部数据惠益FSL的预先培训如何?(2) 如何利用最先进的变异结构? 和(3) 微调如何减轻领域的变化?最终,我们显示,基于简单变压器的管道在Mini-ImageNet、CIFAR-FS、CDFSL和Meta-Dataset等标准基准上产生出令人惊讶的良好业绩。我们的代码和文稿可在 https://chushell.gio.