Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal multi-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k \in [4..\frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $\Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{\Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.
翻译:以往关于多目标进化算法的理论工作主要认为由单式目标构成的简单问题。 本文迈出了第一步, 更深入地了解进化算法如何解决多式多目标问题。 我们提出“ 一个 JumpZeroJump ” 问题, 这是双目标问题, 其单一目标与典型跳跃函数基准是相形见绌的。 我们证明, 简单的进化多目标优化器( SEMO) 无法计算全Pareto 。 相反, 对所有问题大小~ 美元和所有跳跃大小$k $@4.\ frac n2 - 1] 来说, 全球 SEMO (GSEMO) 问题要更深入了解如何解决多式多式问题。 以$( n-2k) nQ@ kk} 来覆盖Paretotofront 问题。 为了改进业绩, 我们的单式多式多式变异化操作器操作器的运行时间改进了 至少在 $\\\\\Omegan realbalaltialalalalalalal restial restialtical exalbalbaltiquestalbal pal pal pal ress press pres 。 为了最近展示了两个战略都展示了。