Current quantum processors are noisy, have limited coherence and imperfect gate implementations. On such hardware, only algorithms that are shorter than the overall coherence time can be implemented and executed successfully. A good quantum compiler must translate an input program into the most efficient equivalent of itself, getting the most out of the available hardware. In this work, we present novel deterministic algorithms for compiling recurrent quantum circuit patterns in polynomial time. In particular, such patterns appear in quantum circuits that are used to compute the ground state properties of molecular systems using the variational quantum eigensolver (VQE) method together with the RyRz heuristic wavefunction Ansatz. We show that our pattern-oriented compiling algorithms, combined with an efficient swapping strategy, produces - in general - output programs that are comparable to those obtained with state-of-art compilers, in terms of CNOT count and CNOT depth. In particular, our solution produces unmatched results on RyRz circuits.
翻译:目前的量子处理器非常吵闹, 一致性有限, 门执行不完善。 在这种硬件上, 只有比整体一致性时间短的算法才能成功执行和完成。 一个好的量子汇编器必须将输入程序转换成效率最高的等效程序, 最能利用现有的硬件。 在这项工作中, 我们提出了新的确定性算法, 用于汇编多元时间的经常性量子电路模式。 特别是, 这种模式出现在量子电路中, 用来计算分子系统与RyRz Heuristic波控安萨茨( RyRz Heursolver) 方法( VQE) 的地面状态。 我们显示, 我们基于模式的汇编算法, 加上高效的转换策略, 总的来说, 产生的产出程序, 与在CNOT 计数和 CNOT 深度方面与最先进的编译器相比。 特别是, 我们的解算法在RyRz 电路上产生了不匹配的结果 。