Power circuits have been introduced in 2012 by Myasnikov, Ushakov and Won as a data structure for non-elementarily compressed integers supporting the arithmetic operations addition and $(x,y) \mapsto x2^y$. The same authors applied power circuits to give a polynomial-time solution to the word problem of the Baumslag group, which has a non-elementary Dehn function. In this work, we examine power circuits and the word problem of the Baumslag group under parallel complexity aspects. In particular, we establish that the word problem of the Baumslag group can be solved in NC -- even though one of the essentials steps is to compare two integers given by power circuits and this problem, in general, is P-complete. The key observation here is that the depth of the occurring power circuits is logarithmic and such power circuits, indeed, can be compared in NC.
翻译:Myasnikov、Ushakov 和 Won 于2012年推出了电路,作为支持计算操作添加值和$(x,y)\ mapto x2&y$的数据结构,作为支持计算操作添加值和$(x,y)\ mapsto x2&y$的非元素压缩整数的数据结构。同一作者使用电路为Baumslag 组的单词问题提供多元时间解决方案,该组具有非元素性 Dehn 功能。在这项工作中,我们在平行复杂方面审查了Baumslag 组的电路和单词问题。特别是,我们确定Baumslag 组的单词问题可以在NC中解决,尽管其中一个基本步骤是比较电路给出的两个整数,而这个问题一般来说是P-完整。这里的主要观察是,电路的深度是逻辑,事实上可以在NC中比较这种电路的深度。