FIB/SEM tomography represents an indispensable tool for the characterization of three-dimensional nanostructures in battery research and many other fields. However, contrast and 3D classification/reconstruction problems occur in many cases, which strongly limits the applicability of the technique especially on porous materials, like those used for electrode materials in batteries or fuel cells. Distinguishing the different components like active Li storage particles and carbon/binder materials is difficult and often prevents a reliable quantitative analysis of image data, or may even lead to wrong conclusions about structure-property relationships. In this contribution, we present a novel approach for data classification in three-dimensional image data obtained by FIB/SEM tomography and its applications to NMC battery electrode materials. We use two different image signals, namely the signal of the angled SE2 chamber detector and the Inlens detector signal, combine both signals and train a random forest, i.e. a particular machine learning algorithm. We demonstrate that this approach can overcome current limitations of existing techniques suitable for multi-phase measurements and that it allows for quantitative data reconstruction even where current state-of the art techniques fail, or demand for large training sets. This approach may yield as guideline for future research using FIB/SEM tomography.
翻译:FIB/SEM地形学是确定电池研究和许多其他领域三维纳米结构的一个不可或缺的工具,但是,在许多情况下,对比和3D分类/重建问题发生,这严重限制了技术的适用性,特别是在多孔材料上,例如电池或燃料电池中的电极材料所使用的技术。区分活性李存储颗粒和碳/气泡材料等不同组成部分是困难的,常常妨碍对图像数据进行可靠的定量分析,甚至可能导致对结构-财产关系得出错误的结论。在这一贡献中,我们提出了一种新颖的方法,用于FIB/SEM图象学获得的三维图像数据的数据分类及其对NMC电池电极材料的应用。我们使用两种不同的图像信号,即角度的SE2室探测器信号和因伦斯探测器信号,将信号和随机森林培训结合起来,即特定的机器学习算法。我们证明,这种方法可以克服目前适合多阶段测量的现有技术的局限性,并允许在目前艺术技术状态失败的情况下对数据进行定量重建,或者要求将这些数据应用于NMC电池电池电池电极电子材料材料材料材料。我们可能要求将这种产出作为未来研究的准则。