In this work, we study the statistical behavior of entanglement in quantum bipartite systems under the Hilbert-Schmidt ensemble as assessed by the standard measure - the von Neumann entropy. Expressions of the first three exact cumulants of von Neumann entropy are known in the literature. The main contribution of the present work is the exact formula of the corresponding fourth cumulant that controls the tail behavior of the distribution. As a key ingredient in deriving the result, we make use of newly observed unsimplifiable summation bases that lead to a complete cancellation. In addition to providing further evidence of the conjectured Gaussian limit of the von Neumann entropy, the obtained formula also provides an improved finite-size approximation to the distribution.
翻译:在这项工作中,我们研究了根据标准措施评估的Hilbert-Schmidt混合体下量子双边系统中纠缠的统计行为。 von Neumann entropy的前三个精确累积体的表达方式在文献中已经知道。目前工作的主要贡献是控制分布的尾部行为的对应第四个累积体的精确公式。作为得出结果的一个关键要素,我们使用新观察到的不可简化的计算基础,导致完全取消。除了进一步提供Von Neumann entropy的预测高斯的极限证据外,获得的公式还为分布提供了改进的有限尺寸近似值。