Distributed quantum information processing is essential for building quantum networks and enabling more extensive quantum computations. In this regime, several spatially separated parties share a multipartite quantum system, and the most natural set of operations is Local Operations and Classical Communication (LOCC). As a pivotal part in quantum information theory and practice, LOCC has led to many vital protocols such as quantum teleportation. However, designing practical LOCC protocols is challenging due to LOCC's intractable structure and limitations set by near-term quantum devices. Here we introduce LOCCNet, a machine learning framework facilitating protocol design and optimization for distributed quantum information processing tasks. As applications, we explore various quantum information tasks such as entanglement distillation, quantum state discrimination, and quantum channel simulation. We discover protocols with evident improvements, in particular, for entanglement distillation with quantum states of interest in quantum information. Our approach opens up new opportunities for exploring entanglement and its applications with machine learning, which will potentially sharpen our understanding of the power and limitations of LOCC. An implementation of LOCCNet is available in Paddle Quantum, a quantum machine learning Python package based on PaddlePaddle deep learning platform.


翻译:分布式量子信息处理对于建立量子网络和促成更广泛的量子计算至关重要。在这个制度中,几个空间分离的当事方共享一个多部分量子系统,而最自然的操作组是本地操作和古典通信(LOCC)系统。作为量子信息理论和实践的关键部分,LOCC导致了许多重要协议,例如量子传送。然而,设计实用的LOCC协议由于LOC的棘手结构和近期量子装置设置的限制而具有挑战性。在这里我们引入了LOCNet,这是一个机器学习框架,便利了分布式量子信息处理任务的协议设计和优化。作为应用,我们探索了各种量子信息任务,如缠绕式蒸馏、量子状态区分和量子频道模拟。我们发现了协议,但有了明显的改进,特别是将量子信息中的量子蒸馏与量子状态混合。我们的方法为探索纠结及其与机器学习的应用开辟了新的机会,这有可能加深我们对LCCCC的能量和局限性的理解。LCCNet的实施在Paddleaddleast Quantultum, 一种量子机器学习 Pydledledle Padledledal平台上可以使用。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
30+阅读 · 2020年9月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
45+阅读 · 2019年12月20日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Top
微信扫码咨询专知VIP会员