Deep generative models trained by maximum likelihood remain very popular methods for reasoning about data probabilistically. However, it has been observed that they can assign higher likelihoods to out-of-distribution (OOD) data than in-distribution data, thus calling into question the meaning of these likelihood values. In this work we provide a novel perspective on this phenomenon, decomposing the average likelihood into a KL divergence term and an entropy term. We argue that the latter can explain the curious OOD behaviour mentioned above, suppressing likelihood values on datasets with higher entropy. Although our idea is simple, we have not seen it explored yet in the literature. This analysis provides further explanation for the success of OOD detection methods based on likelihood ratios, as the problematic entropy term cancels out in expectation. Finally, we discuss how this observation relates to recent success in OOD detection with manifold-supported models, for which the above decomposition does not hold.


翻译:以最大可能性培训的深基因模型仍然是非常流行的关于数据概率推理的方法。然而,据观察,它们可以把超出分配数据的可能性比分配数据的可能性高,从而质疑这些可能性值的含义。在这项工作中,我们从新的角度审视了这一现象,将平均可能性分解成KL差异术语和诱变术语。我们争辩说,后者可以解释上面提到的奇怪OOOD行为,抑制使用高摄氏度数据集中的可能性值。虽然我们的想法很简单,但我们还没有在文献中看到这一点。这一分析进一步解释了基于概率比率的OOOD检测方法的成功,因为有问题的诱变术语在预期中取消。最后,我们讨论了这一观察如何与最近通过多维支持模型探测OOOD的成功相联系,而上述解析则没有起到作用。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
2+阅读 · 2021年11月15日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
8+阅读 · 2021年7月15日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
2+阅读 · 2021年11月15日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
8+阅读 · 2021年7月15日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
8+阅读 · 2018年4月12日
Top
微信扫码咨询专知VIP会员