Determination of posterior probability for go-no-go decision and predictive power are becoming increasingly common for resource optimization in clinical investigation. There are vast published literature on these topics; however, the terminologies are not consistently used across the literature. Further, there is a lack of consolidated presentation of various concepts of the probability of success. We attempted to fill this gap. This paper first provides a detailed derivation of these probability of success measures under the frequentist and Bayesian paradigms in a general setting. Subsequently, we have presented the analytical formula for these probability of success measures for continuous, binary, and time-to-event endpoints separately. This paper can be used as a single point reference to determine the following measures: (a) the conditional power (CP) based on interim results, (b) the predictive power of success (PPoS) based on interim results with or without prior distribution, and (d) the probability of success (PoS) for a prospective trial at the design stage. We have discussed both clinical success and trial success. This paper's discussion is mostly based on the normal approximation for prior distribution and the estimate of the parameter of interest. Besides, predictive power using the beta prior for the binomial case is also presented. Some examples are given for illustration. R functions to calculate CP and PPoS are available through the LongCART package. An R shiny app is also available at https://ppos.herokuapp.com/.
翻译:在临床调查中,确定后继概率、决定和预测力对于优化资源而言越来越常见。关于这些主题的出版文献数量众多;不过,文献中并未始终使用术语;此外,缺乏对成功概率的各种概念的综合介绍;我们试图填补这一空白。本文首先详细推断了根据常客和巴耶西亚模式在一般情况下采取的成功率措施的概率。随后,我们分别介绍了连续、双进和时间到时间到时间终点的成功率分析公式。本文可以用作确定以下措施的单一参考点:(a) 有条件权力(CP) 以临时结果为基础,(b) 预测成功率(PPOS) 以临时结果为基础,或事先分发或不分发,以及(d) 成功率(POS) 在设计阶段进行预期试验的概率。我们讨论了临床成功率和试验成功率。本文的讨论主要基于以往分配的正常近似性,而BIA/RC 预测之前的预测值参数也是使用RAFI的。