The natural interaction between robots and pedestrians in the process of autonomous navigation is crucial for the intelligent development of mobile robots, which requires robots to fully consider social rules and guarantee the psychological comfort of pedestrians. Among the research results in the field of robotic path planning, the learning-based socially adaptive algorithms have performed well in some specific human-robot interaction environments. However, human-robot interaction scenarios are diverse and constantly changing in daily life, and the generalization of robot socially adaptive path planning remains to be further investigated. In order to address this issue, this work proposes a new socially adaptive path planning algorithm by combining the generative adversarial network (GAN) with the Optimal Rapidly-exploring Random Tree (RRT*) navigation algorithm. Firstly, a GAN model with strong generalization performance is proposed to adapt the navigation algorithm to more scenarios. Secondly, a GAN model based Optimal Rapidly-exploring Random Tree navigation algorithm (GAN-RRT*) is proposed to generate paths in human-robot interaction environments. Finally, we propose a socially adaptive path planning framework named GAN-RTIRL, which combines the GAN model with Rapidly-exploring random Trees Inverse Reinforcement Learning (RTIRL) to improve the homotopy rate between planned and demonstration paths. In the GAN-RTIRL framework, the GAN-RRT* path planner can update the GAN model from the demonstration path. In this way, the robot can generate more anthropomorphic paths in human-robot interaction environments and has stronger generalization in more complex environments. Experimental results reveal that our proposed method can effectively improve the anthropomorphic degree of robot motion planning and the homotopy rate between planned and demonstration paths.
翻译:暂无翻译