We propose conformal generative modeling, a framework for generative modeling on 2D surfaces approximated by discrete triangle meshes. Our approach leverages advances in discrete conformal geometry to develop a map from a source triangle mesh to a target triangle mesh of a simple manifold such as a sphere. After accounting for errors due to the mesh discretization, we can use any generative modeling approach developed for simple manifolds as a plug-and-play subroutine. We demonstrate our framework on multiple complicated manifolds and multiple generative modeling subroutines, where we show that our approach can learn good estimates of distributions on meshes from samples, and can also learn simultaneously from multiple distinct meshes of the same underlying manifold.
翻译:我们提出了一种一致性生成建模框架,用于在由离散三角形网格近似的二维表面上进行生成建模。我们的方法利用离散共形几何方面的进展,开发了一种从源三角形网格到诸如球体之类的简单流形目标三角形网格的映射。在考虑网格离散化误差后,我们可以将任何针对简单流形开发的生成建模方法用作即插即用的子例程。我们在多个复杂流形和多个生成建模子例程上演示了我们的框架,其中我们展示了我们的方法可以从样本中学习到网格上的分布的良好估计,还可以同时从相同底层流形的多个不同网格中学习。