Road traffic casualties represent a hidden global epidemic, demanding evidence-based interventions. This paper demonstrates a network lattice approach for identifying road segments of particular concern, based on a case study of a major city (Leeds, UK), in which 5,862 crashes of different severities were recorded over an eight-year period (2011-2018). We consider a family of Bayesian hierarchical models that include spatially structured and unstructured random effects, to capture the dependencies between the severity levels. Results highlight roads that are more prone to collisions, relative to estimated traffic volumes, in the northwest and south of city-centre. We analyse the Modifiable Areal Unit Problem (MAUP), proposing a novel procedure to investigate the presence of MAUP on a network lattice. We conclude that our methods enable a reliable estimation of road safety levels to help identify "hotspots" on the road network and to inform effective local interventions.
翻译:本文根据对一个主要城市(联合王国Leeds)的案例研究,展示了查明特别令人关切的公路部分的网络网状办法,该城市在8年期间(2011-2018年)记录了5 862起不同碎片的碰撞事件,我们认为,一个包含空间结构化和非结构随机效应的巴伊西亚等级模型的大家庭可以捕捉严重程度之间的依赖性。结果突出显示了城市中心西北和南部较易碰撞的公路,与估计交通量相比。我们分析了可改装的地产单元问题(MAUP),提出了调查网络布满地段地段的新的程序。我们的结论是,我们的方法能够可靠地估计公路安全水平,帮助确定公路网络上的“热点”,并为有效的地方干预措施提供信息。