Elliptic problems along smooth surfaces embedded in three dimensions occur in thin-membrane mechanics, electromagnetics (harmonic vector fields), and computational geometry. In this work, we present a parametrix-based integral equation method applicable to several forms of variable coefficient surface elliptic problems. Via the use of an approximate Green's function, the surface PDEs are transformed into well-conditioned integral equations. We demonstrate high-order numerical examples of this method applied to problems on general surfaces using a variant of the fast multipole method based on smooth interpolation properties of the kernel. Lastly, we discuss extensions of the method to surfaces with boundaries.
翻译:暂无翻译