Modern autonomous vehicles (AVs) often rely on vision, LIDAR, and even radar-based simultaneous localization and mapping (SLAM) frameworks for precise localization and navigation. However, modern SLAM frameworks often lead to unacceptably high levels of drift (i.e., localization error) when AVs observe few visually distinct features or encounter occlusions due to dynamic obstacles. This paper argues that minimizing drift must be a key desiderata in AV motion planning, which requires an AV to take active control decisions to move towards feature-rich regions while also minimizing conventional control cost. To do so, we first introduce a novel data-driven perception module that observes LIDAR point clouds and estimates which features/regions an AV must navigate towards for drift minimization. Then, we introduce an interpretable model predictive controller (MPC) that moves an AV toward such feature-rich regions while avoiding visual occlusions and gracefully trading off drift and control cost. Our experiments on challenging, dynamic scenarios in the state-of-the-art CARLA simulator indicate our method reduces drift up to 76.76% compared to benchmark approaches.
翻译:现代自主飞行器(AV)往往依赖视觉、LIDAR,甚至雷达同步定位和绘图框架(SLAM)来精确定位和导航。然而,现代SLAM框架往往导致令人无法接受的高度漂移(即定位误差),因为AV观测到的视觉特征很少,或者由于动态障碍而遇到隐蔽现象。本文认为,在AV运动规划中,尽量减少漂移必须是关键的分层,这要求AV作出积极的控制决定,向地貌丰富的区域发展,同时尽量减少常规控制成本。为了做到这一点,我们首先引入了一个新的数据驱动感知模块,以观察LIDAR点云和估计数,这些云和估计数的特征/区域必须朝向漂移最小化方向发展。然后,我们引入了一个可解释的模型预测控制器(MPC),将AV移向这些地貌丰富的区域,同时避免视觉隐蔽和优雅地交换漂移和控制成本。我们试验了在州级CARLA模拟器中具有挑战性的动态假想情景,显示我们的方法比基准方法降低到76.76%。