Numerous significant progress on fisheye image rectification has been achieved through CNN. Nevertheless, constrained by a fixed receptive field, the global distribution and the local symmetry of the distortion have not been fully exploited. To leverage these two characteristics, we introduced Fishformer that processes the fisheye image as a sequence to enhance global and local perception. We tuned the Transformer according to the structural properties of fisheye images. First, the uneven distortion distribution in patches generated by the existing square slicing method confuses the network, resulting in difficult training. Therefore, we propose an annulus slicing method to maintain the consistency of the distortion in each patch, thus perceiving the distortion distribution well. Second, we analyze that different distortion parameters have their own efficacy domains. Hence, the perception of the local area is as important as the global, but Transformer has a weakness for local texture perception. Therefore, we propose a novel layer attention mechanism to enhance the local perception and texture transfer. Our network simultaneously implements global perception and focused local perception decided by the different parameters. Extensive experiments demonstrate that our method provides superior performance compared with state-of-the-art methods.


翻译:在鱼眼图像校正方面,通过CNN取得了许多重大进展。然而,由于受到固定的可接受场的限制,全球分布和扭曲的局部对称没有得到充分利用。为了利用这两个特点,我们引入了Fishexex,将鱼眼图像作为提高全球和地方感知的顺序进行处理。我们根据鱼眼图像的结构特性对变形器进行了调整。首先,现有平方切片方法产生的补丁分布不均,使网络混乱,导致培训困难。因此,我们建议采用废弃的切除法,以维持每个补丁的扭曲一致性,从而洞察到扭曲的分布。第二,我们分析不同的扭曲参数有其自身的功效领域。因此,对当地区域的看法与全球一样重要,但变形器在本地感知方面有弱点。因此,我们提出一个新的层次关注机制,以加强当地感知和文字传输。我们的网络同时执行由不同参数决定的全球感知和集中的地方感。广泛的实验表明,我们的方法提供了优于状态方法。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员