We introduce Net2Brain, a graphical and command-line user interface toolbox for comparing the representational spaces of artificial deep neural networks (DNNs) and human brain recordings. While different toolboxes facilitate only single functionalities or only focus on a small subset of supervised image classification models, Net2Brain allows the extraction of activations of more than 600 DNNs trained to perform a diverse range of vision-related tasks (e.g semantic segmentation, depth estimation, action recognition, etc.), over both image and video datasets. The toolbox computes the representational dissimilarity matrices (RDMs) over those activations and compares them to brain recordings using representational similarity analysis (RSA), weighted RSA, both in specific ROIs and with searchlight search. In addition, it is possible to add a new data set of stimuli and brain recordings to the toolbox for evaluation. We demonstrate the functionality and advantages of Net2Brain with an example showcasing how it can be used to test hypotheses of cognitive computational neuroscience.
翻译:我们引入了 Net2Brain, 一个图形和命令-线用户界面工具箱, 用于比较人工深神经网络( DNNs) 和人类大脑记录的代表空间。 虽然不同的工具箱只促进单一功能, 或只关注一小部分受监督图像分类模型, Net2Brain 允许提取600多个经过培训、能够执行各种与视觉有关的任务( 如语义分割、深度估计、动作识别等)的DNNN的激活。 工具箱计算了这些激活的表示式异差矩阵( RDMs), 并用代表相似性分析( RSA) 、 加权RSA 和大脑记录进行比较。 此外, 还可以在评估工具箱中添加一套新的关于Slimuli 和 大脑记录的数据集。 我们展示了 Net2Brain 的功能和优势, 并举例说明如何使用它来测试认知计算神经科学的假设。