Learning latent features from time series data is an important problem in both machine learning and brain function. One approach, called Slow Feature Analysis (SFA), leverages the slowness of many salient features relative to the rapidly varying input signals. Furthermore, when trained on naturalistic stimuli, SFA reproduces interesting properties of cells in the primary visual cortex and hippocampus, suggesting that the brain uses temporal slowness as a computational principle for learning latent features. However, despite the potential relevance of SFA for modeling brain function, there is currently no SFA algorithm with a biologically plausible neural network implementation, by which we mean an algorithm operates in the online setting and can be mapped onto a neural network with local synaptic updates. In this work, starting from an SFA objective, we derive an SFA algorithm, called Bio-SFA, with a biologically plausible neural network implementation. We validate Bio-SFA on naturalistic stimuli.
翻译:从时间序列数据中学习潜在特征是机器学习和大脑功能中的一个重要问题。 一种方法,称为“慢地分析 ” ( SFA ), 利用与快速变化的输入信号相比许多显著特征的缓慢性能。 此外, 当接受自然学刺激性培训时, SFA 复制了初级视觉皮层和河马坎普斯中细胞的有趣特性, 表明大脑使用时间慢度作为学习潜在特征的计算原则。 然而, 尽管SFA 与模拟大脑功能具有潜在关联性, 目前还没有SFA 算法, 具有生物学上可信的神经网络功能, 也就是说, 算法在网络环境中运行, 并且可以被映射到带有本地合成更新的神经网络上。 在这项工作中, 我们从SFA 目标出发, 一种SFA 算法, 称为生物- SFA, 具有生物学上可信的神经网络功能。 我们验证自然学刺激的生物- SFA 。