The selection of software technologies is an important but complex task. We consider developers of JavaScript (JS) applications, for whom the assessment of JS libraries has become difficult and time-consuming due to the growing number of technology options available. A common strategy is to browse software repositories via search engines (e.g., NPM, or Google), although it brings some problems. First, given a technology need, the engines might return a long list of results, which often causes information overload issues. Second, the results should be ranked according to criteria of interest for the developer. However, deciding how to weight these criteria to make a decision is not straightforward. In this work, we propose a two-phase approach for assisting developers to retrieve and rank JS technologies in a semi-automated fashion. The first-phase (ST-Retrieval) uses a meta-search technique for collecting JS technologies that meet the developer's needs. The second-phase (called ST-Rank), relies on a machine learning technique to infer, based on criteria used by other projects in the Web, a ranking of the output of ST-Retrieval. We evaluated our approach with NPM and obtained satisfactory results in terms of the accuracy of the technologies retrieved and the order in which they were ranked.


翻译:选择软件技术是一项重要但复杂的任务。 我们认为,JavaScript(JS)应用程序的开发者是一项重要但又复杂的任务。我们考虑JavaScript (JS) 应用程序的开发者,由于现有技术选择越来越多,对JavaScript (JS) 应用程序的评估变得困难和耗时。一个共同的战略是通过搜索引擎(例如国家预防机制或Google)浏览软件储存库,尽管这带来了一些问题。首先,鉴于技术需要,引擎可能退回一长串结果清单,这往往造成信息超载问题。第二,结果应当按照开发者感兴趣的标准排列。然而,决定如何权衡这些标准来作出决定并非简单明了。在这项工作中,我们建议采取两阶段办法协助开发者检索JS技术,并以半自动方式对JS技术进行排名。第一阶段(ST-Rerievval)使用元研究技术收集满足开发者需要的JS技术。第二阶段(称为ST-Rank),其依据网络其他项目使用的标准,根据机器学习技术的顺序来推算出它们作出决策的顺序。我们用国家数据库和等级评估了我们的国家数据库的准确性技术。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
15+阅读 · 2021年2月19日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员