Eigencontours are the first data-driven contour descriptors based on singular value decomposition. Based on the implementation of ESE-Seg, eigencontours were applied to the instance segmentation task successfully. In this report, we incorporate eigencontours into the PolarMask network for instance segmentation. Experimental results demonstrate that the proposed algorithm yields better results than PolarMask on two instance segmentation datasets of COCO2017 and SBD. Also, we analyze the characteristics of eigencontours qualitatively. Our codes are available at https://github.com/dnjs3594/Eigencontours.
翻译:Eigencontours是第一个基于单值分解的数据驱动等离子描述器,根据ESE-Seg的落实情况,对例分解任务成功地应用了egencontours。在本报告中,我们将egencontours纳入极地磁网络,例如分解。实验结果显示,拟议的算法在COCO2017和SBD两个分解数据集方面产生比PollarMask更好的结果。此外,我们还分析了egencontours的质量特征。我们的代码可在https://github.com/dnjs3594/Eigencontours上查阅。