Recently, deep neural networks (DNNs) have been widely applied in programming language understanding. Generally, training a DNN model with competitive performance requires massive and high-quality labeled training data. However, collecting and labeling such data is time-consuming and labor-intensive. To tackle this issue, data augmentation has been a popular solution, which delicately increases the training data size, e.g., adversarial example generation. However, few works focus on employing it for programming language-related tasks. In this paper, we propose a Mixup-based data augmentation approach, MixCode, to enhance the source code classification task. First, we utilize multiple code refactoring methods to generate label-consistent code data. Second, the Mixup technique is employed to mix the original code and transformed code to form the new training data to train the model. We evaluate MixCode on two programming languages (JAVA and Python), two code tasks (problem classification and bug detection), four datasets (JAVA250, Python800, CodRep1, and Refactory), and 5 model architectures. Experimental results demonstrate that MixCode outperforms the standard data augmentation baseline by up to 6.24\% accuracy improvement and 26.06\% robustness improvement.


翻译:最近,深入的神经网络(DNNs)被广泛应用于语言的编程理解中。一般而言,对具有竞争性性能的DNN模式的培训需要大量和高质量的标签培训数据。然而,这些数据的收集和标签是耗费时间和劳动密集型的。为解决这一问题,数据增强是一个流行的解决办法,它微妙地增加了培训数据的规模,例如对抗性范例生成。然而,很少有人将它用于语言相关任务的编程工作作为重点。在本文件中,我们提议采用基于混合的数据增强方法Mixcode,即MixCode,以加强源代码分类任务。首先,我们使用多种代码重组方法生成与标签一致的代码数据。第二,采用混合技术来混合原始代码和转换代码,以形成新的培训数据模型。我们评估两种编程语言的MixCode(JAVA和Python)的MixCodead,两项代码任务(问题分类和错误检测)、四个数据集(JAVA250、Pyson800、Cdrepop1和Refactory),以及5个模型模型模型模型改进了Msimalimalimalims。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员