We prove distributional convergence for a family of random processes on $\mathbb{Z}$, which we call cooperative motions. The model generalizes the "totally asymmetric hipster random walk" introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, 2020]. We present a novel approach based on connecting a temporal recurrence relation satisfied by the cumulative distribution functions of the process to the theory of finite difference schemes for Hamilton-Jacobi equations [Crandall and Lyons, 1984]. We also point out some surprising lattice effects that can persist in the distributional limit, and propose several generalizations and directions for future research.


翻译:我们证明一个随机过程的组合在分配上趋于一致,我们称之为合作动议。模型概括了在[Addario-Berry、Cairns、Devroye、Kerriou和Mitchell,2020年]中引入的“完全不对称的臀部随机行走 ” 。我们提出了一种新颖的方法,将过程累积分布功能所满足的时间重复关系与汉密尔顿-Jacobi等式的有限差别计划理论联系起来[Crandall和Lyons,1984年]。我们还指出了在分配限度中可能持续的一些令人惊讶的拉蒂效应,并为未来的研究提出了若干概括和方向。

0
下载
关闭预览

相关内容

最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Dynamic Principal Subspaces in High Dimensions
Arxiv
0+阅读 · 2021年6月2日
Reward is enough for convex MDPs
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员