We introduce two constructions in geometric deep learning for 1) transporting orientation-dependent convolutional filters over a manifold in a continuous way and thereby defining a convolution operator that naturally incorporates the rotational effect of holonomy; and 2) allowing efficient evaluation of manifold convolution layers by sampling manifold valued random variables that center around a weighted diffusion mean. Both methods are inspired by stochastics on manifolds and geometric statistics, and provide examples of how stochastic methods -- here horizontal frame bundle flows and non-linear bridge sampling schemes, can be used in geometric deep learning. We outline the theoretical foundation of the two methods, discuss their relation to Euclidean deep networks and existing methodology in geometric deep learning, and establish important properties of the proposed constructions.
翻译:在几何深学习中,我们引入了两层构造:(1) 连续地将依赖定向的革命过滤器放在一个方块上,从而界定一个自然地包含全息旋转效应的革命操作员;(2) 通过取样以加权扩散平均值为核心的多重有价随机变量,对多变层进行高效评估。 这两种方法都来自对方块的随机分析和几何统计的启发,并举例说明了在几何深学习中如何使用随机方法 -- -- 这里的横向框架捆绑流和非线性桥梁取样方案。 我们概述了这两种方法的理论基础,讨论了它们与欧洲深海深层网络的关系和现有的几何深学习方法,并确定了拟议构造的重要特性。