Unmatched pairs of forward and back projectors are common in X-ray CT computations for large-scale problems; they are caused by the need for fast algorithms that best utilize the computer hardware, and it is an interesting and challenging task to develop fast and easy-to-use algorithms for these cases. Our approach is to use preconditioned GMRES, in the form of the AB- and BA-GMRES algorithms, to handle the unmatched normal equations associated with an unmatched pair. These algorithms are simple to implement, they rely only on computations with the available forward and back projectors, and they do not require the tuning of any algorithm parameters. We show that these algorithms are equivalent to well-known LSQR and LSMR algorithms in the case of a matched projector. Our numerical experiments demonstrate that AB- and BA-GMRES exhibit a desired semi-convergence behavior that is comparable with LSQR/LSMR and that standard stopping rules work well. Hence, AB- and BA-GMRES are suited for large-scale CT reconstruction problems with noisy data and unmatched projector pairs.


翻译:在用于大规模问题的X射线CT计算中,不配对的前方和后方投影仪是常见的;它们是由于需要采用最能利用计算机硬件的快速算法而造成的;为这些案件开发快速和容易使用的算法是一项有趣而艰巨的任务。我们的做法是使用AB和BA-GMRES算法形式的前提条件性GMERES处理与不配配对的对方相关的不配对等的正常方程式。这些算法简单易执行,只依赖与现有的前方和后方投影仪的计算,而不需要调整任何算法参数。我们表明,这些算法相当于一个匹配投影机的众所周知的LSQR和LSMR算法。我们的数值实验表明,AB和BA-GMRES表现出一种与LSQR/LSMR和标准停止规则相近似的预期半兼容性行为。因此,ABGMES和BAGMERES适合用紧凑的数据和不配制投影机进行大规模CT重建问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
已删除
将门创投
4+阅读 · 2019年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员