We propose a data-driven way to clean covariance matrices in strongly nonstationary systems. Our method rests on long-term averaging of optimal eigenvalues obtained from temporally contiguous covariance matrices, which encodes the average influence of the future on present eigenvalues. This zero-th order approximation outperforms optimal methods designed for stationary systems.
翻译:我们建议了一种数据驱动方式来清洁极强的非静止系统中的共变矩阵。我们的方法在于长期平均使用从暂时毗连的共变矩阵中获取的最佳电子元值,该矩阵编码了未来对当前电子元值的平均影响。这个零顺序近似优于为固定系统设计的最佳方法。