We revisit the complexity of procedures on SFAs (such as intersection, emptiness, etc.) and analyze them according to the measures we find suitable for symbolic automata: the number of states, the maximal number of transitions exiting a state, and the size of the most complex transition predicate. We pay attention to the special forms of SFAs: {normalized SFAs} and {neat SFAs}, as well as to SFAs over a {monotonic} effective Boolean algebra.
翻译:我们重新审视了SFA程序的复杂性(例如交叉、空虚等),并根据我们认为适合象征性自动数据的措施进行分析:国家数量、退出国家的过渡最大数量以及最复杂的过渡前提的大小。 我们关注SFA的特殊形式:{正规的SFA}和{neat SFAs},以及针对有效的{monotonic}Boulebra的SFAs。