We study computational hardness of feature and conjunction search through the lens of circuit complexity. Let $x = (x_1, ... , x_n)$ (resp., $y = (y_1, ... , y_n)$) be Boolean variables each of which takes the value one if and only if a neuron at place $i$ detects a feature (resp., another feature). We then simply formulate the feature and conjunction search as Boolean functions ${\rm FTR}_n(x) = \bigvee_{i=1}^n x_i$ and ${\rm CONJ}_n(x, y) = \bigvee_{i=1}^n x_i \wedge y_i$, respectively. We employ a threshold circuit or a discretized circuit (such as a sigmoid circuit or a ReLU circuit with discretization) as our models of neural networks, and consider the following four computational resources: [i] the number of neurons (size), [ii] the number of levels (depth), [iii] the number of active neurons outputting non-zero values (energy), and [iv] synaptic weight resolution (weight). We first prove that any threshold circuit $C$ of size $s$, depth $d$, energy $e$ and weight $w$ satisfies $\log rk(M_C) \le ed (\log s + \log w + \log n)$, where $rk(M_C)$ is the rank of the communication matrix $M_C$ of a $2n$-variable Boolean function that $C$ computes. Since ${\rm CONJ}_n$ has rank $2^n$, we have $n \le ed (\log s + \log w + \log n)$. Thus, an exponential lower bound on the size of even sublinear-depth threshold circuits exists if the energy and weight are sufficiently small. Since ${\rm FTR}_n$ is computable independently of $n$, our result suggests that computational capacity for the feature and conjunction search are different. We also show that the inequality is tight up to a constant factor if $ed = o(n/ \log n)$. We next show that a similar inequality holds for any discretized circuit. Thus, if we regard the number of gates outputting non-zero values as a measure for sparse activity, our results suggest that larger depth helps neural networks to acquire sparse activity.


翻译:我们通过电路复杂度的透镜来研究特性的计算硬度和连接搜索。 如果让 $x = (x_ 1,..., x_n) 美元 (resp., $y = (y_ 1,..., y_n) ) 的布利恩变量,其中每个值都包含一个值,只要一个神经元在现场检测了一个特性( resp., 另一个特性)。 然后我们简单地将功能和连接搜索设置为布利安函数 $( rm FTR ⁇ n (x) =\ bigvee i= 1 {n x_i$ 美元 和 $ 美元 comJNJón (x, y) =\ 美元 colm 的基值= 1 $ n_i\\\ rige\ y 美元 美元 。 我们使用一个阈限或离散电路的电路( sider) 作为神经元网络的模型,并且考虑以下四种计算资源: [i] 小神经值( 量(sizele) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员