This paper considers the problem of zero-shot entity linking, in which a link in the test time may not present in training. Following the prevailing BERT-based research efforts, we find a simple yet effective way is to expand the long-range sequence modeling. Unlike many previous methods, our method does not require expensive pre-training of BERT with long position embedding. Instead, we propose an efficient position embeddings initialization method called Embedding-repeat, which initializes larger position embeddings based on BERT-Base. On Wikia's zero-shot EL dataset, our method improves the SOTA from 76.06% to 79.08%, and for its long data, the corresponding improvement is from 74.57% to 82.14%. Our experiments suggest the effectiveness of long-range sequence modeling without retraining the BERT model.
翻译:本文考虑了零点实体连接问题, 测试时间中的连接在培训中可能不存在。 在以BERT为基础的现行研究努力之后, 我们发现一个简单而有效的方法是扩大长距离序列模型。 与以往许多方法不同, 我们的方法并不要求用长期嵌入定位对BERT进行昂贵的预培训。 相反, 我们建议了一种高效的位置嵌入初始化方法, 叫做嵌入- repeatel, 即启动基于 BERT- Base 的较大位置嵌入。 在Wikia 零点的EL 数据集上, 我们的方法将SOTA从76.06%改进为79.08%, 而对于长期数据来说, 相应的改进从74.57%到82.14%。 我们的实验表明不再培训 BERT 模型的远程序列模型的有效性。