We are interested in a fast solver for linear systems obtained by discretizing the Stokes problem with multi-patch Isogeometric Analysis. We use Dual-Primal Isogeometric Tearing and Interconnecting (IETI-DP) methods. In resent years, IETI-DPand related methods have been studied extensively, mainly for the Poisson problem. For the Stokes equations, several challenges arise since the corresponding system is not positive definite, but has saddle point structure. Moreover, the Stokes equations with Dirichlet boundary conditions have a null-space, consisting of the constant pressure modes. This poses a challenge when considering the scaled Dirichlet preconditioner. We test out two different scaled Dirichlet preconditioners with different choices of primal degrees of freedom. The tests are performed on rather simple domains (the unit square and a quarter annulus) and a more complicated domain (a Yeti-footprint).
翻译:我们感兴趣的是,通过将斯托克斯问题与多端分批同位素分析分解而获得的线性系统快速解决方案。 我们使用双底面同位素撕裂和互连(IETI-DP)方法。 在怨恨的年代,对IETI-DP和相关方法进行了广泛研究,主要针对Poisson问题。 在斯托克斯方程式方面,由于相应的系统并不确定,但具有支撑点结构,产生了若干挑战。此外,与Dirichlet边界条件的Stoks方程式有一个空格,由恒定压力模式组成。在考虑扩大的 Dirichlet前置装置时,这是一个挑战。我们测试了两种不同规模的Drichlet前置装置,其基本自由度有不同的选择。测试是在相当简单的领域(单位方形和四分之一的失效)和一个比较复杂的领域(Yeti-脚印)进行。