Malicious architecture extraction has been emerging as a crucial concern for deep neural network (DNN) security. As a defense, architecture obfuscation is proposed to remap the victim DNN to a different architecture. Nonetheless, we observe that, with only extracting an obfuscated DNN architecture, the adversary can still retrain a substitute model with high performance (e.g., accuracy), rendering the obfuscation techniques ineffective. To mitigate this under-explored vulnerability, we propose ObfuNAS, which converts the DNN architecture obfuscation into a neural architecture search (NAS) problem. Using a combination of function-preserving obfuscation strategies, ObfuNAS ensures that the obfuscated DNN architecture can only achieve lower accuracy than the victim. We validate the performance of ObfuNAS with open-source architecture datasets like NAS-Bench-101 and NAS-Bench-301. The experimental results demonstrate that ObfuNAS can successfully find the optimal mask for a victim model within a given FLOPs constraint, leading up to 2.6% inference accuracy degradation for attackers with only 0.14x FLOPs overhead. The code is available at: https://github.com/Tongzhou0101/ObfuNAS.
翻译:恶意建筑的提取已成为深神经网络(DNN)安全的关键关切。作为一种防御,拟议将受害者DNN重新绘制成一个不同的结构。然而,我们注意到,只要提取一个模糊的DNN结构,对手仍然可以重新开发一个性能高(例如准确性)的替代模型,使模糊的建筑技术无效。为了减轻这种探索不足的脆弱性,我们提议ObfuNAS,它将DNN结构模糊转化为神经结构搜索问题。利用功能保存模糊战略的组合,ObfuNAS确保模糊的DNNN结构只能比受害者更精确。我们验证ObfuNAS的性能,使用开放源结构数据集,如NAS-Bench-101和NAS-Bench-301。实验结果表明,ObfuNAS能够成功地在给定的FLOPs限制范围内找到受害者模型的最佳遮罩。使用功能保存模糊性战略,ObfuNAS确保模糊的 DNNNS结构只能达到受害人的精度。 0.16/FPOBS 的精确度。在0.16/FGOBS 。在FGOBS 。MA 。