We introduce a geometry-inspired deep learning method for detecting 3D mirror plane from single-view images. We reduce the demand for massive training data by explicitly adding 3D mirror geometry into learning as an inductive prior. We extract semantic features, calculate intra-pixel correlations, and build a 3D correlation volume for each plane. The correlation volume indicates the extent to which the input resembles its mirrors at various depth, allowing us to identify the likelihood of the given plane being a mirror plane. Subsequently, we treat the correlation volumes as feature descriptors for sampled planes and map them to a unit hemisphere where the normal of sampled planes lies. Lastly, we design multi-stage spherical convolutions to identify the optimal mirror plane in a coarse-to-fine manner. Experiments on both synthetic and real-world datasets show the benefit of 3D mirror geometry in improving data efficiency and inference speed (up to 25 FPS).
翻译:我们引入了一种由几何法启发的深度学习方法,从单视图像中探测 3D 镜像平面。 我们通过明确添加 3D 镜像几何学, 将大规模培训数据需求降低到作为感应前程的学习中。 我们提取语义特征, 计算像素内部的关联关系, 并为每平面构建一个 3D 相关体积。 相关体积显示输入与不同深度的镜像相似的程度, 使我们能够确定特定平面是否属于镜面。 随后, 我们将相关体积作为抽样飞机的特征描述器处理, 并将它们映射到样本平面的正常位置所在的单位半球。 最后, 我们设计了多阶段的球状组合, 以便以粗略到平面的方式识别最佳镜面。 合成和真实世界数据集的实验显示3D 镜像几何测量在提高数据效率和推断速度( 到 25 FPS) 的好处 。