Abnormal grain growth can significantly alter the properties of materials during processing. This can cause significant variation in the properties and performance of in-spec feedstock components subjected to identical processing paths. Understanding and controlling abnormal grain growth has proved to be elusive due to the stochastic nature of this phenomenon. However, recent advances in deep learning provide a promising alternative to traditional experimental and physics-based methods for understanding this phenomenon. Neural message passing allows deep learning to be applied to irregular inputs including graph representations of grain structures in a material. In this study we generate a large database of Monte Carlo simulations of abnormal grain growth in an idealized system. We apply message passing neural networks to predict the occurrence of abnormal grain growth in these simulations using only the initial state of the system as input. A computer vision model is also trained for the same task for comparison. The preliminary results indicate that the message passing approach outperforms the computer vision method and achieved 75% prediction accuracy, significantly better than random guessing. Analysis of the uncertainty in the Monte Carlo simulations provides a road map for ongoing work on this project.
翻译:超自然谷物增长可显著改变加工过程中材料的特性。这可能导致受相同加工路径制约的内插原料成分特性和性能的巨大差异。由于这一现象的随机性,理解和控制异常谷物增长证明是难以实现的。然而,最近深层次学习的进展为了解这一现象提供了一种有希望的替代传统实验和物理方法的替代方法。神经信息传递使得对非常规投入的深度学习能够应用,包括材料中的谷物结构图示。在本研究中,我们生成了一个关于理想化系统中异常谷物生长的蒙特卡洛模拟的大型数据库。我们应用信息传递神经网络来预测这些模拟中出现异常谷物增长的情况,仅使用系统的初始状态作为输入。计算机视觉模型也为同一任务进行了培训。初步结果表明,传递信息的方法超越了计算机视觉方法,实现了75%的预测准确性,比随机的准确性要好得多。蒙特卡洛模拟中的不确定性分析为正在进行的该项目工作提供了路线图。