In this paper, we investigate the algorithmic stability of unsupervised representation learning with deep generative models, as a function of repeated re-training on the same input data. Algorithms for learning low dimensional linear representations -- for example principal components analysis (PCA), or linear independent components analysis (ICA) -- come with guarantees that they will always reveal the same latent representations (perhaps up to an arbitrary rotation or permutation). Unfortunately, for non-linear representation learning, such as in a variational auto-encoder (VAE) model trained by stochastic gradient descent, we have no such guarantees. Recent work on identifiability in non-linear ICA have introduced a family of deep generative models that have identifiable latent representations, achieved by conditioning on side information (e.g. informative labels). We empirically evaluate the stability of these models under repeated re-estimation of parameters, and compare them to both standard VAEs and deep generative models which learn to cluster in their latent space. Surprisingly, we discover side information is not necessary for algorithmic stability: using standard quantitative measures of identifiability, we find deep generative models with latent clusterings are empirically identifiable to the same degree as models which rely on auxiliary labels. We relate these results to the possibility of identifiable non-linear ICA.
翻译:在本文中,我们调查了以深基因模型进行未经监督的代表性学习的算法稳定性,这是对同一输入数据进行反复再培训的功能。学习低维线性表示法(例如主要组成部分分析(PCA),或线性独立组成部分分析(ICA))的算法性,保证它们总是显示相同的潜在表示法(可能到任意的轮换或变换)。不幸的是,对于非线性代表学习,例如通过随机梯度梯度下降而培训的变异自动编码模型(VAE),我们没有这样的保证。最近关于非线性ICA的可识别性的工作引入了一套具有可识别的潜在表示法的深层基因化模型,这些模型通过附带信息(例如信息标签)加以调整而可以识别。我们用经验来评估这些模型在反复重新估计参数时的稳定性,并将这些模型与学习在其潜在空间进行组合的深层自动编码模型和深精度变精度模型进行比较。我们发现,对于算法稳定性的可识别性数据是没有必要的:使用标准的定量模型,我们将这些可识别性模型与可识别性模型联系起来。