In the presence of unmeasured confounders, we address the problem of treatment effect estimation from data fusion, that is, multiple datasets collected under different treatment assignment mechanisms. For example, marketers may assign different advertising strategies to the same products at different times/places. To handle the bias induced by unmeasured confounders and data fusion, we propose to separate the observational data into multiple groups (each group with an independent treatment assignment mechanism), and then explicitly model the group indicator as a Latent Group Instrumental Variable (LatGIV) to implement IV-based Regression. In this paper, we conceptualize this line of thought and develop a unified framework to (1) estimate the distribution differences of observed variables across groups; (2) model the LatGIVs from the different treatment assignment mechanisms; and (3) plug LatGIVs to estimate the treatment-response function. Empirical results demonstrate the advantages of the LatGIV compared with state-of-the-art methods.
翻译:在未计量的混淆者在场的情况下,我们从数据组合,即在不同处理分配机制下收集的多个数据集中解决处理效果估计问题。例如,市场家可以在不同的时间/地点为同一产品分配不同的广告策略。为了处理未计量的混淆者和数据组合引起的偏差,我们建议将观测数据分为多个组(每个组,各有独立的处理分配机制),然后将组指标明确作为基于四类的基于四类仪器变量(LatGIV)来模拟。在本文中,我们构想了这一思路,并制定了统一框架,以便(1) 估计不同处理分配机制中观察到的变量的分布差异;(2) 不同处理分配机制中的拉特GIV模式;(3) 将LatGIV作为插头来估计治疗反应功能。 经验性结果表明,LatGIV与最新方法相比,具有优势。