Deep learning shows excellent potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly concerning certain implied parameters. Recently, the diffusion Model has become a rising class of generative models by its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its genuine drawback of a slow generation process, single data types, low likelihood, and the inability for dimension reduction. They are leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We first state the main problem with two landmark works -- DDPM and DSM, and a unified landmark work -- Score SDE. Then, we present improved techniques for existing problems in the diffusion-based model field, including speed-up improvement For model speed-up improvement, data structure diversification, likelihood optimization, and dimension reduction. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations \& further directions. The summation of existing well-classified methods is in our Github:https://github.com/chq1155/A-Survey-on-Generative-Diffusion-Model.
翻译:深层学习显示,由于深层潜在代表性,产生模型在生成任务方面具有极好的潜力。 生成模型是能够随机对某些隐含参数进行观测的各类模型。 最近, 扩散模型因其发电能力而成为了基因模型的不断上升的一类。 如今, 已经取得了巨大的成就。 除计算机视觉、 语音生成、 生物信息学和自然语言处理之外, 更多的应用将在这一领域探索更多的应用。 但是, 扩散模型有其真正的缺陷: 生成过程缓慢、 单一数据类型、 可能性低和无法降低尺寸。 它们正在导致许多强化的工程。 这项调查总结了传播模型的领域。 我们首先用两个具有里程碑意义的工程( DDPM 和 DSM ) 和 一个统一的里程碑性工作( SDE) 来说明主要问题。 然后, 我们提出在基于传播模型的领域中现有问题的改进技术, 包括加速改进模型、 数据结构多样化、 优化 和 尺寸减少。 关于现有的模型, 我们还提供了一个FID的评分、 IS 和 NLLLL 和 NFEE。 此外, 与传播模型的应用模式一起引入了目前AI 系列/ Gialimalimal- 。