A virtual flow meter (VFM) enables continuous prediction of flow rates in petroleum production systems. The predicted flow rates may aid the daily control and optimization of a petroleum asset. Gray-box modeling is an approach that combines mechanistic and data-driven modeling. The objective is to create a computationally feasible VFM for use in real-time applications, with high prediction accuracy and scientifically consistent behavior. This article investigates five different gray-box model types in an industrial case study using real, historical production data from 10 petroleum wells, spanning at most four years of production. The results are diverse with an oil flow rate prediction error in the range of 1.8%-40.6%. Further, the study casts light upon the nontrivial task of balancing learning from both physics and data. Consequently, providing general recommendations towards the suitability of different hybrid models is challenging. Nevertheless, the results are promising and indicate that gray-box VFMs may reduce the prediction error of a mechanistic VFM while remaining scientifically consistent. The findings motivate further experimentation with gray-box VFM models and suggest several future research directions to improve upon the performance and scientific consistency.


翻译:虚拟流量计( VFM) 能够持续预测石油生产系统的流量。 预测流量率可能有助于石油资产的日常控制和优化。 Gray-box模型是一种将机械和数据驱动模型相结合的方法。 目标是创建一种可计算可行的VFM模型,用于实时应用,具有高预测准确性和科学一致性的行为。 文章利用10口石油油井的真实历史生产数据,对工业案例研究中的5种不同的灰箱模型进行了调查,该模型覆盖了最长4年的生产。 结果各不相同,石油流量预测误差在1.8-40.6%之间。 此外,该研究还展示了平衡物理和数据学习的非边际任务。 因此,为不同混合模型的适合性提出一般建议具有挑战性。 然而,结果很有希望,并表明灰箱VFM模型在科学上可以减少机械化VFM模型的预测误差。 研究结果鼓励用灰箱VFM模型进行进一步实验,并提出未来改进性能和科学一致性的若干研究方向。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关资讯
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员