Motivated by uncertain parameters encountered in Markov decision processes (MDPs) and stochastic games, we study the effect of parameter uncertainty on Bellman operator-based algorithms under a set-based framework. Specifically, we first consider a family of MDPs where the cost parameters are in a given compact set; we then define a Bellman operator acting on a set of value functions to produce a new set of value functions as the output under all possible variations in the cost parameter. We prove the existence of a fixed point of this set-based Bellman operator by showing that it is contractive on a complete metric space, and explore its relationship with the corresponding family of MDPs and stochastic games. Additionally, we show that given interval set bounded cost parameters, we can form exact bounds on the set of optimal value functions. Finally, we utilize our results to bound the value function trajectory of a player in a stochastic game.


翻译:基于Markov决策流程(MDPs)和随机游戏中遇到的不确定参数,我们研究了参数不确定性对基于设定框架的Bellman操作者算法的影响。具体地说,我们首先考虑将成本参数纳入一个特定契约集的MDP系列;然后根据一套价值函数定义一个Bellman操作者,以产生一套新的价值函数,作为成本参数所有可能变异下的产出。我们通过显示该设定的Bellman操作者在一个完整的计量空间上具有合同性来证明存在一个固定点,并探索其与MDPs和随机游戏的对应组合的关系。此外,我们展示了给定的固定成本参数间隔,我们可以在一套最佳价值函数上形成精确的界限。最后,我们利用我们的结果将玩家在随机游戏中的价值函数轨迹绑定。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2020年11月25日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员