Children often suffer wrist trauma in daily life, while they usually need radiologists to analyze and interpret X-ray images before surgical treatment by surgeons. The development of deep learning has enabled neural networks to serve as computer-assisted diagnosis (CAD) tools to help doctors and experts in medical image diagnostics. Since YOLOv8 model has obtained the satisfactory success in object detection tasks, it has been applied to various fracture detection. This work introduces four variants of Feature Contexts Excitation-YOLOv8 (FCE-YOLOv8) model, each incorporating a different FCE module (i.e., modules of Squeeze-and-Excitation (SE), Global Context (GC), Gather-Excite (GE), and Gaussian Context Transformer (GCT)) to enhance the model performance. Experimental results on GRAZPEDWRI-DX dataset demonstrate that our proposed YOLOv8+GC-M3 model improves the mAP@50 value from 65.78% to 66.32%, outperforming the state-of-the-art (SOTA) model while reducing inference time. Furthermore, our proposed YOLOv8+SE-M3 model achieves the highest mAP@50 value of 67.07%, exceeding the SOTA performance. The implementation of this work is available at https://github.com/RuiyangJu/FCE-YOLOv8.
翻译:暂无翻译