Recently substantial improvements in neural retrieval methods also bring to light the inherent blackbox nature of these methods, especially when viewed from an explainability perspective. Most of existing works on Search Result Explanation (SeRE) are designed to provide factual explanation, i.e. to find/generate supporting evidence about documents' relevance to search queries. However, research in cognitive sciences have shown that human explanations are contrastive i.e. people explain an observed event using some counterfactual events; such explanations reduce cognitive load, and provide actionable insights. Though already proven effective in machine learning and NLP communities, the formulation and impact of counterfactual explanations have not been well studied for search systems. In this work, we aim to investigate the effectiveness of this perspective via proposing and evaluating counterfactual explanations for the task of SeRE. Specifically, we first conduct a user study where we investigate if counterfactual explanations indeed improve search sessions' effectiveness. Taking this as a motivation, we discuss the desiderata that an ideal counterfactual explanation method for SeRE should adhere to. Next, we propose a method $\text{CFE}^2$ (\textbf{C}ounter\textbf{F}actual \textbf{E}xplanation with \textbf{E}diting) to provide pairwise explanations to search engine result page. Finally, we showcase that the proposed method when evaluated on four publicly available datasets outperforms baselines on both metrics and human evaluation.


翻译:最近在神经检索方法方面最近出现的重大改进,也揭示了这些方法的内在黑匣子性质,特别是从可解释性的角度来看,尤其是从解释的角度来看,大多数现有的搜索结果解释(SeRE)工作旨在提供事实解释,即寻找/分析文件与搜索查询的相关性的佐证证据。然而,认知科学研究显示,人类解释是对比性的,即人们使用一些反事实事件解释观察到的事件;这种解释减少了认知负载,提供了可操作的洞察力。虽然在机器学习和NLP社区已经证明有效,但反事实解释的表述和影响还没有为搜索系统得到很好的研究。在这项工作中,我们的目标是通过提出和评价与SeRE任务相关的反事实解释来调查这个观点的有效性。具体地说,我们首先进行用户研究,我们研究反事实解释是否确实提高了搜索会的效能。我们以此为动机,讨论关于SRE应坚持一种理想的反事实解释方法的底线,即SeRE应坚持。接下来,我们提出一种方法 $\ Text{CF\2$(\textflical deskal descrustration) deview afrodustrual def suration{E}

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员