Various brain functions that are necessary to maintain life activities materialize through the interaction of countless neurons. Therefore, it is important to analyze the structure of functional neuronal network. To elucidate the mechanism of brain function, many studies are being actively conducted on the structure of functional neuronal ensemble and hub, including all areas of neuroscience. In addition, recent study suggests that the existence of functional neuronal ensembles and hubs contributes to the efficiency of information processing. For these reasons, there is a demand for methods to infer functional neuronal ensembles from neuronal activity data, and methods based on Bayesian inference have been proposed. However, there is a problem in modeling the activity in Bayesian inference. The features of each neuron's activity have non-stationarity depending on physiological experimental conditions. As a result, the assumption of stationarity in Bayesian inference model impedes inference, which leads to destabilization of inference results and degradation of inference accuracy. In this study, we extend the range of the variable for expressing the neuronal state, and generalize the likelihood of the model for extended variables. By comparing with the previous study, our model can express the neuronal state in larger space. This generalization without restriction of the binary input enables us to perform soft clustering and apply the method to non-stationary neuroactivity data. In addition, for the effectiveness of the method, we apply the developed method to multiple synthetic fluorescence data generated from the electrical potential data in leaky integrated-and-fire model.
翻译:维持生命活动所必需的各种大脑功能是通过无数神经元的相互作用而实现的。 因此,必须分析功能神经网络的结构。 但是,为了阐明大脑功能的机制,正在积极对功能性神经集合和枢纽的结构进行许多研究,包括神经科学的所有领域。此外,最近的研究显示,功能性神经元体和枢纽的存在有助于信息处理的效率。由于这些原因,需要从神经活动数据中推断功能性神经神经神经元集合的方法,并提出了基于Bayesian推断的方法。然而,在模拟Bayesian推断中的活动存在问题。根据生理实验条件,每个神经神经元活动的特征都具有非常态性。因此,拜斯神经元集合和枢纽的假设性有助于影响信息处理的效率。由于这些原因,需要从神经活动数据中推导出功能性神经神经神经元酶集合,并且根据Bayesa的推断法提出了方法。我们从表示神经元状态的变异性模型的变异性范围范围扩大到了Bayeservical, 将模型的变异性模型的变异性范围扩大到了我们神经元模型的变异性,将模型的变形法的变异性在模型中的变的变的变本法的变的变异性, 使模型的变本法的变的变本法的变法的变的变的变的变法可以使我们的变法 使模型的变法的变的变法的变的变的变的变的变的变的变法 使我们的变的变的变的变法 使得了我们的变法的变法的变的变的变的变的变的变的变的变的变的变的变的变的变法 使了我们的变的变的变的变的变的变的变的变法 使了我们的变的变的变的变的变的变的变的变的变法 的变的变法 的变的变的变的变的变的变法 使的变法 使的变的变的变的变的变法 的变的变的变的变的变的变的变法 使的变的变的变法 的变的变的变法 使的变的变的变的变的变的变的变的变的变法</s>