Let $G=(V,E,w)$ be a weighted directed graph without negative cycles. For two vertices $s,t\in V$, we let $d_{\le h}(s,t)$ be the minimum, according to the weight function $w$, of a path from $s$ to $t$ that uses at most $h$ edges, or hops. We consider algorithms for computing $d_{\le h}(s,t)$ for every $1\le h\le n$, where $n=|V|$, in various settings. We consider the single-pair, single-source and all-pairs versions of the problem. We also consider a distance oracle version of the problem in which we are not required to explicitly compute all distances $d_{\le h}(s,t)$, but rather return each one of these distances upon request. We consider both the case in which the edge weights are arbitrary, and in which they are small integers in the range $\{-M,\ldots,M\}$. For some of our results we obtain matching conditional lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月12日
Arxiv
1+阅读 · 2024年12月12日
Arxiv
1+阅读 · 2024年12月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月12日
Arxiv
1+阅读 · 2024年12月12日
Arxiv
1+阅读 · 2024年12月11日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员