Multi-agent reinforcement learning (RL) often struggles to ensure the safe behaviours of the learning agents, and therefore it is generally not adapted to safety-critical applications. To address this issue, we present a methodology that combines formal verification with (deep) RL algorithms to guarantee the satisfaction of formally-specified safety constraints both in training and testing. The approach we propose expresses the constraints to verify in Probabilistic Computation Tree Logic (PCTL) and builds an abstract representation of the system to reduce the complexity of the verification step. This abstract model allows for model checking techniques to identify a set of abstract policies that meet the safety constraints expressed in PCTL. Then, the agents' behaviours are restricted according to these safe abstract policies. We provide formal guarantees that by using this method, the actions of the agents always meet the safety constraints, and provide a procedure to generate an abstract model automatically. We empirically evaluate and show the effectiveness of our method in a multi-agent environment.


翻译:多试剂强化学习(RL)往往难以确保学习代理人的安全行为,因此通常不适应安全关键应用。为了解决这一问题,我们提出了一个方法,将正式核查与(深度)RL算法结合起来,以保证在培训和测试中满足正式指定的安全限制。我们提议的方法表示在概率计算树逻辑(PCTL)中核查的制约因素,并建立一个系统的抽象代表,以减少核查步骤的复杂性。这一抽象模型允许示范检查技术确定一套满足PCTL所述安全限制的抽象政策。然后,根据这些安全的抽象政策限制代理人的行为。我们提供正式保证,通过使用这种方法,代理人的行动总是符合安全限制,并提供自动生成抽象模型的程序。我们从经验上评估和展示了我们在多试环境中的方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2020年12月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
32+阅读 · 2021年3月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员