We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art performance with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster.
翻译:我们建议采用一个快速时间序列分类(TSC)算法,即快速时间序列(TSC)算法,以极小的时间和许多最先进方法的复杂组合结构实现最先进的性能。 多指标集改进了MiniRoket,这是迄今为止最快的TSC算法之一,增加了多个集合操作员和变换,以提高所产生特征的多样性。除了处理原始输入序列外,多指标集还应用第一顺序差异来改变原始序列。两种表达法都应用了进化法,四个集中操作员都应用了进化结果。在使用加利福尼亚河岸大学TSC基准数据集进行基准测试时,多指标集比MiniRoket要精确得多,在准确性方面比目前最先进的方法HIVE-COTE 2.0具有竞争力,同时速度要快。