Finding the exact integrality gap $\alpha$ for the LP relaxation of the 2-edge-connected spanning multigraph problem (2EC) is closely related to the same problem for the Held-Karp relaxation of the metric traveling salesman problem (TSP). While the former problem seems easier than the latter, since it is less constrained, currently the upper bounds on the respective integrality gaps for the two problems are the same. An approach to proving integrality gaps for both of these problems is to consider fundamental classes of extreme points. For 2EC, better bounds on the integrality gap are known for certain important special cases of these fundamental points. For example, for half-integer square points, the integrality gap is between $\frac{6}{5}$ and $\frac{4}{3}$. Our main result is to improve the approximation factor to $\frac{9}{7}$ for 2EC for these points. Our approach is based on constructing convex combinations and our key tool is the top-down coloring framework for tree augmentation, whose flexibility we employ to exploit beneficial properties in both the initial spanning tree and in the input graph. We also show how these tools can be tailored to the closely related problem of uniform covers for which the proofs of the best-known bounds do not yield polynomial-time algorithms. Another key ingredient is to use a rainbow spanning tree decomposition, which allows us to obtain a convex combination of spanning trees with particular properties


翻译:找到与两端连接的多重问题( EC) 的完整度差距 $\ alpha$, 用于LP 的完整度差距 。 对于 2EC 来说, 这些基本点中某些重要的特殊案例对整体性差距有更好的界限。 例如, 半整数平方点, 整体性差距在$\frac{ 6 ⁇ 5} 美元和$\frac{ 4 ⁇ 3} 美元之间似乎比后者容易。 我们的主要结果是将这两个问题各自整体性差距的近似系数提高到$frac{9 ⁇ 7} 这两个点。 我们的方法是考虑极端点的基本类别。 对于 2EC 来说, 这些基本点中某些重要的特殊案例对整体性差距有更好的界限。 例如, 半整数半整数平方位平方点, 整体性差距在$\\ frac{ 6 ⁇ 5} 美元和$\\ frafc{ 4} 3} 美元之间。 我们的主要结果是将这些点的近因子系数提高。 我们的方法是构建一个自上到树放大的颜色框架框架, 我们用它的灵活性来探索的有利性特性, 在直径图中, 直径平面的直径图中, 也可以让不同的精度上方格中, 我们的精度能显示一个精度的精准的精准的精准的精准的精准的直方格。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
27+阅读 · 2021年7月16日
专知会员服务
50+阅读 · 2020年12月14日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
27+阅读 · 2021年7月16日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员