Modeling and control of continuum soft robots remains a challenging task due to their inherent nonlinearities and high degrees of freedom. These complexities hinder the construction of high-fidelity models appropriate for real-time control. While various model and learning-based approaches have been proposed to address these challenges, they lack generalizability and rarely preserve the structure of the dynamics. In this work, we propose a new, data-driven approach for extracting control-oriented models on invariant manifolds from data. We overcome the issues outlined above and demonstrate our superior performance of Spectral Submanifold Reduction (SSMR) vis-\'a-vis the state of the art.
翻译:连续软机器人的建模和控制由于其固有的非线性和高度自由,仍然是一项具有挑战性的任务,这些复杂因素妨碍了建立适合实时控制的高度忠诚模型;虽然提出了各种模型和学习方法来应对这些挑战,但它们缺乏普遍性,很少保持动态结构;在这项工作中,我们提议采用新的、以数据为动力的方法,从数据中提取关于异质元体的控制型模型;我们克服了上述问题,并展示了我们光谱子宫减少(SSMR)相对于最新技术的优异性表现。